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1. Introduction

In [8] we have described a procedure for solving the submersible iden-
tification problem in three steps. That is, for the first approximation we
shall concentrate on an ocean which may be taken to be a slab of thickness
h, R}, and has a constant index of refraction. This is reasonable as the
most difficult aspects of our problem come from the way the ocean surface
interferes with the propagation of sound off an arbitrary submersible.[6), [8]
Because of the difficulties introduced by the ocean boundaries, analytical
computation of the far field must be based on some sort of approximation
scheme such as using a parabolic approximation, which tends to destroy
vertical resolution; or using a trucated form of the modal expansion for the
Green's function ( propagator):

G(r,0,2;p,6,0) = o > ?ﬂ(”"zjlr;@)

Here the a, = [1 — (n+ 1/2)?(x/kh)*]~'/? are the modal eigenvalues and

Hy(ka, | re® — pe' |). (1.1)

$n(2) = sin(k(1 — a2)'/22){ 1 ). By using the propagator G(r,z;p,() (1.1),
1This work is supported in part by Sea Grant NAS6A A-D-SG040.
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the Green’s integral representation, and the asymptotic behavior of the
Hankel functions, Gilbert and Xu[5), [6] have shown that the acoustic pres-

sure has the asymptotic expansion

1 & tkapr e .fm'n 2,0
p(r,z,ﬂ):.;l_ﬂ.zekn E"",.(T'l
n=0

m=0
1 KX Fu(r,z,98)
o~ 7-1/2 E_:o rm ) (1'2)
where
N .
Fo(r,z,08):= Z e'k““"F,.m(z,G). (1.3)
n=0

The modes ¢,(2) for n > N do not propagate, but rather decay expo-
nentially and hence are not included in the sum (1.3). We refer to the

term
N
Fy(r,z,0) := Y _ ™" F 4(z,9) (1.4)
n=0

as the finite-ocean far field pattern, which we also write in an array form

as
F(zae) = [fOO(z)G)': flﬂ(zme):""l fNO(zaa)]°
Gilbert and Xu [5],[6] show that it has a modal representation of form

X 40
vx,2) 1= 3 o m = L

where g(z,¢) is called a propagating Herglotz kernel.

g(zs ¢)¢n(z)eika"(x'€>daéa (15)

Having obtained an approximate far field pattern for various wave num-
bers k and various z dependencies in the incident “plane waves”, in step
two we may solve the inverse problem. Recall that the “plane waves” have

modal components in the z direction. If we are not considering axially



symmetric solutions then for each modal component and for each k we use

2n+1 incoming waves with directions in the range coordinates
o} = [cos(2mj/(2n + 1)), sin(27j/(2n + 1))], j = 0,1,2, ... 2n (1.6)

Now let F, 0 < n <N, —n < m < n be the coefficients of the spherical
harmonic approximation of far field pattern F# generated by the plane wave
with the direction ;. By expanding the propagating Herglotz kernels, and
the parametric representation of the submersible’s surface p= f(6,¢)in

terms of surface harmonics we are led to consider a minimization problem

of the form
2n 0 2
— 3 . J
W) = min (3. |[ | Fle.dik,of otz )dzds
2w pm 2 .
+ [ [T v(5(4,6),6.0)[ sin6dbag), (1.7)
where

V(y) = V i—lirp‘/az, 9'(3, ¢')G(x$ 2, {! C)do'f

is the propagating (entire) Herglotz function, and 7! is the inverse trans-
formation which relates the coefficients of the starting field in spherical
coordinates to those in cylindrical coordinates. Other minimization prob-
lems might be considered instead, for example see Xu [10].

In step three, we consider the case with an index of refraction which
is depth dependent. We must make certain alternations in STEP ONE
and STEP TWO. In this step we need to find a complete system of the
solutions to replace the complete family (1.9) by another one, which must

be a solution of the depth-dependent Helmholtz equation
Au+ k(2 u=0. (1.8)
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Such a family may be generated by means of the transmutation
EQ = 0(r,2,0) + [ K(2,9)0(r,s,4)ds,

where the kernel K(z,s) satisfies the Gelfand-Levitan equation

PK _ &K

az* ds?

+ K [n*}(z) - 1)K =0, (1.9)

and the characteristic conditions [4]

258;1{(2,2) + B n¥(z)— 1) =0, (1.10)
2%1{(:., —z 4 2h) + k*[n’*(z) - 1] =0, (1.11)

that characterize a hard ocean boundary at z=h. The functions §)(r, z) are
solutions of (1.8) with n(z)=1 and boundary conditions. In order to obtain

the propagating far-field patterns, we represent the propagating solution
by

N. M
Y Y Brabn(2)HD(ka,r)e™™, (1.12)
n=0 m=-M

where the ¢,(z) are the modal solutions (eigenfunctions of the separated

z-equation) for the variable index n(z):[4], [6]
sz + K¥(n?(2) - a®)g =0, (1.13)
and the boundary conditions
g.(ka,h) =0, (1.14)

and

g(ka,0) = 0. (1.15)



It is clear that if we want to study the wave propagation and its far-
field patterns, we must know the normal modes in the stratified ocean.
Therefore, as an important component of step three, we need to construct

éa(2), n =0,1,2,... numerically for n(z) # 1.

2 Numerical Transmutation Method

As discussed in [4], a solution of (1.13 )~ (1.15 ) is given by
ai(ka, z) = pi(ka, z) + f;. " K(z, 8)pi(ka, s)ds (2.1)
where K(z, s) is a solution of (1.9} ~ (1.11) and p(ka, z) satisfies
Px: + k(1 —a)p=0, (2.2)
and the boundary condition
p.ka, k) = 0. (2.3)

Notice that gi(ka, z) will satisfy the boundary condition (1.14 ) at z=h
regardless of the value of a because p,(ka,z) has the same property and
our transmutation preserves boundary conditions at z=h. The boundary
condition (1.15 ) at z=0 is then used to determine the values of a, that are

roots of
0
pi(ka,0) + fh K(0,s)py(ka, s)ds = 0. (2.4)

Since n(z) may be > 1 or < 1 in general, we may have that a2 > 1 or

a? < 1. In fact, there is a documented example [13] where
2
n¥(z)=1- O.ICOS(%),
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where h = 2000, k = 87 /2000, for which we have
(kag)® = 1.6555156 x 1074,

(ka;)® = 1.5101910 x 10—,

that 1s,

aj = 1.0483675 > 1,
a? = 0.9563396 < 1.

Therefore, p;(ka,z) may generally be given by either
p(ka,2) := cos[k(1 ~ a®)/2(h — 2)),if a < 1,

or

pi(ka, z) := cosh[k(a® ~ 1)*(h - 2)], if a > 1.

For a? < 1, let A = k(1 — a?)'/2h, (2.4) becomes
0 8

cos(A) —i—'/“L K(0,8)cos[M1 — E)]ds = 0.
For a® > 1, let A = k{a? — 1)'/2h, (2.4) becomes

cosh(X) + ‘/:K(O, 3)cosh|A(1 — -}-i—)]ds = 0.

(2.5)

(2.6)

(2.7)

(2.8)

Obviously, in order to find all propagating eigenvalues we have to find all

A 2 0 such that either (2.7) or (2.8) is satisfied. To avoid this inconvenience,

we can rewrite the equation (1.13) as
9ux + K[(n*(2) — n) — (¢* — n))lg = 0,

where nj > 0 can be chosen so that a? < 1 + n2.
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Let #(z) = n? — n}, & = a® — n}, the solution of (2.9) can be written

g(ka,z) = p(ka,z) + _/: K(z,3)p(ké, s)ds (2.10)
where K(z, s) satisfies

#K 8K )
BT B + kz[nz(z) -n2— 1K =0, (2.11)

and the characteristic conditions [4]

23—1-1‘((.2, z) + k¥ n?(z) = n2 — 1] =0, (2.12)
2%}1‘{(2, —z +2h) + K[n*(z) —nd — 1] = 0. (2.13)

The eigenvalues are the roots of equation (2.7) with A = k(1 — a2)1/2h. We

can normalize the problem by letting 2 = 2/h, & = s/h, £ = (¢ + 5 —

-3

2)/2, and n = (% — 3)/2, k = koh; then (2.11) ~ (2.13) can be reduced to

M, . 2

ME0) = ¥ [n(-H-ni-ld, 0s€<,  (219)
M{0,n) = %k’ [ -t-ni-1d, 0<n<1  (216)

We use a finite difference method developed in [2] to compute M(£, ) as
well as K(z,s). Following Aziz and Hubbard [2), we definefor 0 < m+n <

L, where L is the number of interpolation points and dz = 1/L, we see that
M(mdz — %dz,ndz) = %[M(mdz, ndz) + M(mdz — dz, ndz)],

M(mdz, ndz — %dz) = %[M(mdz, ndz) + M(mdz, ndz — dz)],



M(mdz - %dz,ndz - %dz) =
%-[M(mdz - %dz, ndz) + M(mdz — %dz, ndz — dz)]
- %[M(mdz,ndz - %dz) + M(mdz — dz,ndz — %dz)]
- -}I[M(mdz, ndz) + M(mdz — dz, nd>)

+M(mdz, ndz — dz) + M(mdz — dz, ndz — dz)],

M, (mdz — %dz, ndz — %dz)
= (d2)™*[M(mdz, ndz) — M(mdz — dz, ndz)
—M(mdz, ndz — dz) + M(mdz — dz,ndz — dz)),

where

Cmn = k?[n*(Ndz — (m+n—1)dz) — nj) ~ 1),
Now (2.14) may be approximated by
(d2)7*[M(mdz, ndz) — M(mdz — dz,ndz) — M(mdz,ndz — dz)
+M(mdz ~ dz, ndz — dz)] + cmn%[M(Mz, ndz) + M(mdz — dz, ndz)
+M(mdz,ndz — dz) + M(mdz — dz,ndz — dz)] = 0.

Denote u,,, = M(mdz, ndz), then

Ymn = i%j;—‘jj—jﬁum(n-n + %ﬂtm—l)n = Y(m-)n-1),  (217)
with
Umo = f(mdz — %dz), (2.18)
and
U = g(ndz — %dz), (2.19)
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where .
H©=5 [T~ -ns -t 0<e <,
g(n) = Ec;-fo"[nzz(l —t)-nj—1]dt, 0<n < 1

As showed in [2], the global error of this scheme is O((I/L)z) A FOR-
TRAN program using this scheme is in Appendix A.
We can also use finite difference approximation to the equation (2.1) as

well as (2.12)(2.13). Let dz =ds = 1/1,
K..(idz,ids) = i?(ffm,j —2K;; + K;1,;),
K,,(idz,ids) = é(.r{.-,,-+1 —2K;;+ K j41),
K(idz,ids) = -;-(K.-,,-H + Kij-1),
then (2.11) follows |

Kip1;+ Kiorj— Kijaor = Kijo1 + (d2)*[n?(1) = n0 — 1K jy1 + K jo1) = 0,
(2.20)
0<i+j<2L, 72120

and
2 #2(: a2 - i-1
K,-','=—k (2dz) [ ( )+'23(0) 2+Z(ﬁ2(j)_1)] .
=
2 n(z n2(0) — =l
Kiar i = _k (:z) [ al )+g (0) -2 + Z(ﬁ’(j) — 1)‘ ,

fori=1,2,...,2L.

A PC-Matlab program using this scheme is shown in Appendix B.



3 Examples

In this section we present two examples and compare them with typical
normal mode computation results.

Example 1: The results presented in this example m:;e based ;:>n an
idealized ocean model with a symmetric sound changel. The index of re-
fraction is

n*(z2)=1- 0.1co.s(2—:—z),
where the depth of ocean h = 2000, and k¥ = 87 /2000.
Figure 1: The transmutation kernel K(z,s) for example 1.

Figure 2: The eigenvalues shown bracketed by two os, which are the

zeros of
cos(3) + [ ® K(0, s)cos| (1 — =)lds = 0.

The dotted curve is cos(A) and the solid curve is the integral term.
Table 1: Unperturbed eigenvalues (x10~3) for example 1. The index

of refraction n?(z) = 1.

TABLE 1: (x10e-3)

DSF TRSM TRSME TRSM TRSMm

Mode analytic fortran error MC-Matlab  error
157297 0.157297 0.000000 0.157297  0.000000
; 3.122362 0.152362 0.000000 0.152362 0.000000
3 0.142492 0.142492 0.000000 0.142492 0.000000
4 0.127688 0.127688 0.0C0000 0.127688 0.000000
5 0.107948 0.107948 0.000000 0.107948 0.000000
6 0.083275 0.083275 0.000000 0.083275 0.000000
7 0.0536€5 0.053665 0.00c000 0.053665 0.000000
8 0.018122 0.019122 0.050CC0 0.019122 0.000000
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Table 2: Eigenvalues (x10~2) for index of refractionn?(z) = 1—0.1cos(2r§/ k).

TABﬂE_2; {x10e-3)

bSFE TRSM TRSME TRSM TREMm

Mode analytie fortran error MC-Matlab error
1 0.165552 0.165543 0.000009 0.165553 0.000001
2 0.151019 0.151031 0.000012 0.151062 0.000043
3 0.139981 0.139976 0.000005 0.14001% 0.000034
4 0.126508 0.126466 0.000042 0.126436 0.000072
5 0.107284 0.107263 0.000021 0.107259 0.000025
6 0.082841 0.082835 0.000006 0.082863 0.000028
7 0.053359 0.053364 0.000005 0.053436 0.000077
8 0.018893 0.018910 0.000017 0.019030 0.000137

Figure 3 - 10: Propagating modes: solid curves computed by Fortran
program and +++4 curves by PC-MATLAB.

Figure 11: Transmision loss versus range r:
TL = 10logyof| oz, 7)}f’]

where

p(r,z) = igqfo,.(z)q&n(zo)ﬂo(kaﬂr).
and source depth zp = 500, receiver depth z = 1000, 200 < r < 20000.
The dotted curve is for a homogeneous ocean n(z) = 1, and the solid curve
is for the stratified ocean n(z) = 1 — 0.1cos(27z/k). We will consider an
inverse problem to ret:onstruct' the index of refraction by using this data.
Figure 12: Transmision loss versus range r: where source depth zo =
500, receiver depth z = 1000, 500 < r < 50000.

Figure 13: Transmision loss versus range r : where source depth zg =

500, receiver depth z=1000, rg = 10, 1000 < r < 100000,
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Figure 14: Finite difference scheme,

Example 2 This example is an idealized ocean model for an ocean

sound channel with its axis at one-fifth the depth of the ocean. The index

of refraction is

57 2\/2|
2 — y —— — —
n*(z})=1+0.1 [sm( hz)

where the depth of ocean A = 5000, and k = 87/5000.

Figure 15: The transmutation kernel K(z, s) for example 2.

Figure 16: The eigenvalues shown bracketed by two os, which are the

zeros of

c;os(.\) + /:_K(O,s)cos[a\(l - %)]ds = 0.

Table 3: Unperturbed eigenvalues (x10~*) for example 1. The index

of refraction n?(z) = 1.

TABLE 3: (x10e-4)
DSF TRSM TRSME TRSM TRSMm
Mode analytic fortran error MC-Matlab error
1 0.251675 0.251675 0.000000 0.251675 0.000000
2 0.243779  0.243779  0.000000 0.243779 0.000000
3 0.227988 0.227%88 0.000000 0.227988 0.000000
4 0.204301 0.204301 0.000000 0.204301 0.000000
5 0.172718 0.172718 0.000000 ©.172718 0.000000
6 0.133240 ,0.133240 0.000000 0.133240 0.000000
7 0.085866 0.085656 0.000000 0.085656 0.000000
8 0.030596 ©.0320596 0.000000 0.030596 0.000000




Table 4: Eigenvalues (x10~*) for index of refractionn?(z) = 14+0.1sin(57z/4h+
n/4) — 0.2v/3 /5. |

TABLE 4: (x10e=4)

DsF TRSM TRSME TRSM ' TRSMm

Mocde analytic fortran error MC-Matlab error
1 0.260430 0.260608 0.000178 0.260870 0.000440
2 0.237756 0.238109 0.000353 0.2386%6 0.000900
3 0.221614 0.221957 0.000343 0.222472 0.000858
4 0.202254 0.202403 0.000149 0.202586 0.000332
5 0.171646 0.171741 0.000095 0.171872 0.000226
6 0.132547 0.132620 0.000073 0.132760 0.000213
7 0.085379 0.085445 0.000066 0.085621 0.000242
B - 0.030234 0.030303 0.00006% 0.030540 0.000306

Figure 17 - 24: Propagating modes: solid curves computed by Fortran
program and +++ curves by PC-MATLAB.

Figure 25: Transmision loss versus range r : where source depth 2z, =
500, receiver depth z=1000, ro = 10, 200 < r < 20000.

Figure 26: Transmision loss versus range r : where source depth z; =
500, receiver depth z=1000, ro = 10, 500 < r < 50000.

Figure 27: Transmision loss versus range r : where source depth z5 =
500, receiver depth z=1000, r; = 10, 1000 < r < 100000.

Figure 28: Finite difference scheme.
LS
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